Experimental realization of dynamic walking of the biped humanoid robot KHR-2 using zero moment point feedback and inertial measurement

نویسندگان

  • Jung-Yup Kim
  • Ill-Woo Park
  • Jun-Ho Oh
چکیده

This paper describes a novel control algorithm for dynamic walking of biped humanoid robots. For the test platform, we developed KHR-2 (KAIST Humanoid Robot-2) according to our design philosophy. KHR-2 has many sensory devices analogous to human sensory organs which are particularly useful for biped walking control. First, for the biped walking motion, the motion control architecture is built and then an appropriate standard walking pattern is designed for the humanoid robots by observing the human walking process. Second, we define walking stages by dividing the walking cycle according to the characteristics of motions. Third, as a walking control strategy, three kinds of control schemes are established. The first scheme is a walking pattern control that modifies the walking pattern periodically based on the sensory information during each walking cycle. The second scheme is a real-time balance control using the sensory feedback. The third scheme is a predicted motion control based on a fast decision from the previous experimental data. In each control scheme, we design online controllers that are capable of maintaining the walking stability with the control objective by using force/torque sensors and an inertial sensor. Finally, we plan the application schedule of online controllers during a walking cycle according to the walking stages, accomplish the walking control algorithm and prove its effectiveness through experiments with KHR-2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Control Algorithm for Biped Walking Based on Policy Gradient Fuzzy Reinforcement Learning

This paper presents a novel dynamic control approach to acquire biped walking of humanoid robots focussed on policy gradient reinforcement learning with fuzzy evaluative feedback . The proposed structure of controller involves two feedback loops: conventional computed torque controller including impact-force controller and reinforcement learning computed torque controller. Reinforcement learnin...

متن کامل

Biped Robot Control Using Cerebellar Model Articulation Controller

This paper presents the design of a biped robot using the Cerebellar Model Articulation Controller (CMAC). An inertial navigation system (INS) including gyroscopes and accelerometers is used to measure the robot’s attitude and acceleration for modifying the dynamic attitude of the robot. Moreover, a zero moment point (ZMP) compensator is used to on-line adjust the gait trajectories to improve t...

متن کامل

Development of an Omnidirectional Walking Engine for Full-sized Lightweight Humanoid Robots

In this paper, we propose and demonstrate an omnidirectional walking engine that achieves stable walking using feedback from an inertial measurement unit (IMU). The 3D linear inverted pendulum model (3D-LIPM) is used as a simplified model of the robot, the zero moment point (ZMP) criterion is used as the stability criterion, and only the feedback from the IMU is utilized for stabilization. The ...

متن کامل

3 Development of Biped Humanoid Robots at the Humanoid Robot Research

Recently, many studies have focused on the development of humanoid biped robot platforms. Some of the well-known humanoid robots are Honda’s humanoid robots, the WABIAN series of robots from Waseda University, Partner, QRIO, H6 and H7, HRP and JOHNNIE. Given that humanoids are complex, expensive and unstable, designers face difficulties in constructing the mechanical body, integrating the hardw...

متن کامل

Control Algorithm For Biped Walking Using Reinforcement Learning

The work is concerned with the integrated dynamic control of humanoid locomotion mechanisms based on the spatial dynamic model of humanoid mechanism. The control scheme was synthesized using the centralized model with proposed structure of dynamic controller that involves two feedback loops: position-velocity feedback of the robotic mechanism joints and reinforcement learning feedback around Ze...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced Robotics

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2006